Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Infect Dis Model ; 8(2): 574-602, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2327941

ABSTRACT

COVID-19 and Tuberculosis (TB) are among the major global public health problems and diseases with major socioeconomic impacts. The dynamics of these diseases are spread throughout the world with clinical similarities which makes them difficult to be mitigated. In this study, we formulate and analyze a mathematical model containing several epidemiological characteristics of the co-dynamics of COVID-19 and TB. Sufficient conditions are derived for the stability of both COVID-19 and TB sub-models equilibria. Under certain conditions, the TB sub-model could undergo the phenomenon of backward bifurcation whenever its associated reproduction number is less than one. The equilibria of the full TB-COVID-19 model are locally asymptotically stable, but not globally, due to the possible occurrence of backward bifurcation. The incorporation of exogenous reinfection into our model causes effects by allowing the occurrence of backward bifurcation for the basic reproduction number R0 < 1 and the exogenous reinfection rate greater than a threshold (η > Î·∗). The analytical results show that reducing R0 < 1 may not be sufficient to eliminate the disease from the community. The optimal control strategies were proposed to minimize the disease burden and related costs. The existence of optimal controls and their characterization are established using Pontryagin's Minimum Principle. Moreover, different numerical simulations of the control induced model are carried out to observe the effects of the control strategies. It reveals the usefulness of the optimization strategies in reducing COVID-19 infection and the co-infection of both diseases in the community.

2.
Heliyon ; 8(10): e11195, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2076136

ABSTRACT

We developed a TB-COVID-19 co-infection epidemic model using a non-linear dynamical system by subdividing the human population into seven compartments. The biological well-posedness of the formulated mathematical model was studied via proving properties like boundedness of solutions, no-negativity, and the solution's dependence on the initial data. We then computed the reproduction numbers separately for TB and COVID-19 sub-models. The criterion for stability conditions for stationary points was examined. The basic reproduction number of sub-models used to suggest the mitigation and persistence of the diseases. Qualitative analysis of the sub-models revealed that the disease-free stationary points are both locally and globally stable provided the respective reproduction numbers are smaller than unit. The endemic stationary points for each sub-models were globally stable if their respective basic reproduction numbers are greater than unit. In each sub-model, we performed an analysis of sensitive parameters concerning the corresponding reproduction numbers. Results from sensitivity indices of the parameters revealed that deceasing contact rate and increasing the transferring rates from the latent stage to an infected class of individuals leads to mitigating the two diseases and their co-infections. We have also studied the analytical behavior of the full co-infection model by deriving the equilibrium points and investigating the conditions of their stability. The numerical experiments of the proposed co-infection model agree with the findings in the analytical results.

3.
Arab Journal of Basic and Applied Sciences ; 29(1):175-192, 2022.
Article in English | Taylor & Francis | ID: covidwho-1882957
4.
Journal of Applied Mathematics ; : 1-20, 2022.
Article in English | Academic Search Complete | ID: covidwho-1765180

ABSTRACT

Tuberculosis (TB) and coronavirus (COVID-19) are both infectious diseases that globally continue affecting millions of people every year. They have similar symptoms such as cough, fever, and difficulty breathing but differ in incubation periods. This paper introduces a mathematical model for the transmission dynamics of TB and COVID-19 coinfection using a system of nonlinear ordinary differential equations. The well-posedness of the proposed coinfection model is then analytically studied by showing properties such as the existence, boundedness, and positivity of the solutions. The stability analysis of the equilibrium points of submodels is also discussed separately after computing the basic reproduction numbers. In each case, the disease-free equilibrium points of the submodels are proved to be both locally and globally stable if the reproduction numbers are less than unity. Besides, the coinfection disease-free equilibrium point is proved to be conditionally stable. The sensitivity and bifurcation analysis are also studied. Different simulation cases were performed to supplement the analytical results. [ FROM AUTHOR] Copyright of Journal of Applied Mathematics is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

5.
Results Phys ; 34: 105191, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1621006

ABSTRACT

In this paper, we proposed a nonlinear deterministic mathematical model for the transmission dynamics of COVID-19. First, we analyzed the system properties such as boundedness of the solutions, existence of disease-free and endemic equilibria, local and global stability of equilibrium points. Besides, we computed the basic reproduction number R 0 and studied its normalized sensitivity for model parameters to identify the most influencing parameter. The local stability of the disease-free equilibrium point is also verified via the help of the Jacobian matrix and Routh Hurwitz criteria. Moreover, the global stability of the disease-free equilibrium point is proved by using the approach of Castillo-Chavez and Song. We also proved the existence of the forward bifurcation using the center manifold theory. Then the model is fitted with COVID-19 infected cases reported from March 13, 2020, to July 31, 2021, in Ethiopia. The values of model parameters are then estimated from the data reported using the least square method together with the fminsearch function in the MATLAB optimization toolbox. Finally, different simulation cases were performed using PYTHON software to compare with analytical results. The simulation results suggest that the spread of COVID-19 can be managed via minimizing the contact rate of infected and increasing the quarantine of exposed individuals.

SELECTION OF CITATIONS
SEARCH DETAIL